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This review article covers developments in multidimensional
separations combined with chemometrics that were published
in 2008 through 2010, specifically for multidimensional gas
chromatography, liquid chromatography, and electrophoresis.
Although different instrumentation is used to generate multidi-
mensional separations data, many similar data processing options
and chemometrics can be applied in order to objectively distill
the data into useful knowledge while reducing manual analy-
sis and preserving data integrity. This review article describes the
chemometrics employed in the referenced studies in terms of unsu-
pervised, supervised, preprocessing, resolution, and image analysis
algorithms. Other factors that affect converting data into useful
knowledge are the structure of the data and the format of the data
submitted to the analysis methods, so the studies are also described
in terms of data dimensionality and data format (i.e., whether
peak tables or raw data points were analyzed).
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INTRODUCTION

This review article covers developments in chemometrics applied to com-
prehensive two-dimensional (2D) separations that were published in 2008
through 2010, where chemometrics is defined as algorithmic and mathemat-
ical techniques for extracting information from chemical data. This article is
designed to act as an update to the early 2008 review article in the Journal
of Chromatography A covering the same topic but over the time period 2002
through 2007 (1). Since the 2008 review, there have been other reviews pub-
lished describing quantitative analysis of comprehensive two-dimensional
gas chromatography and in 2009, Amigo et al. wrote an excellent review arti-
cle describing chemometrics and data analysis methods for one-dimensional
(1D) and multidimensional chromatography, but we will limit our scope to
chemometrics with multidimensional chromatography and multidimensional
electrophoresis (2—4).

Analysts are increasingly turning to multidimensional separations to gain
an improved understanding of complex samples. Typical multidimensional
separations include comprehensive two-dimensional gas chromatography
(GCxGO), two-dimensional liquid chromatography (LCxXLC), and multidi-
mensional electrophoresis (4-11). Thus, this review article is broken into
three main sections based on the analytical instrumentation. Common issues
arise among these three types of instruments when the analyst attempts
to distill the data into useful knowledge and these issues are addressed
by the chemometric techniques discussed herein. There are generally two
approaches to converting the data into useful knowledge; one approach is
to analyze peak data tables generated by the instrument software and the
other approach is to analyze the raw data points.

The latter approach forces the analyst to manage massive volumes of
data, so each of the three main sections is organized by separating the
projects that processed raw data from the projects that processed peak
tables provided by the instrument software. Another issue when handling
multidimensional data is managing the structure of the data. For example, a
univariate detector, e.g., flame ionization detector (FID), on a 2D chromato-
graphic instrument continually collects signal data as a function of time,
yielding a 1D data vector as shown in Figure 1A. This vector is composed
of consecutive second dimension separations that can be reshaped into a
2D matrix as in Figure 1B where the peak “slices” that elute at a similar first
dimension separation time and identical second dimension separation time
are considered to be a single compound. Thus, it is necessary to combine
multiple 1D peak “slices” into a single 2D peak with an integrated volume
which, ideally, is proportional to chemical concentration. These 2D chro-
matograms are frequently depicted as a surface plot (Figure 1C) or as a
contour plot (Figure 1D) where the contours represent signal magnitude.

Data analysis options are related to whether or not the data has been
reshaped into a 2D matrix. An instrument with two separation dimensions
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FIGURE 1 A univariate detector on a 2D chromatographic instrument collects a 1D data
vector composed of consecutive second dimension separations (A) that can then be reshaped
into a 2D matrix (B) where the peak “slices” that elute at a similar separation time and
identical column 2 time are considered to be a single compound. Thus, multiple 1D peak
“slices” are actually a single peak with an integrated volume that is proportional to chemical
concentration. These 2D chromatograms are frequently depicted as surface plots (C) or as a
contour plot (D) where the contours represent signal magnitude. Two chemicals represented
by the asterisk and the cross are shown in these figures. When multiple 2D chromatograms
are combined into a single 3-way array, then another dimension is added to the data (E).
(color figure available online.)

and a univariate detector, e.g., GCxGC-FID, will generate 2D data, but
an instrument with two separation dimensions combined with a multivari-
ate detector, e.g., time-of-flight mass spectrometer (TOFMS), will generate
three-dimensional (3D) data. When multiple 2D or 3D chromatograms are
combined into a single 3-way or 4-way array, then another dimension is
added to the data (Figure 1E) and this added dimensionality is yet another
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factor that affects data analysis options. Thus, the projects in each main
section are also organized by increasing data dimensionality.

This review focuses on analytical methods that use multidimensional
chromatography combined with chemometrics that are objective, reduce
manual analysis, and preserve data integrity (i.e., preserve resolution and
precision throughout data exportation, compression, or reduction steps).
Many chemometric data mining methods discussed herein can be loosely
grouped into two categories: unsupervised or supervised. Unsupervised
techniques are helpful when the user desires to discover the class of a
complex sample, so no knowledge of class membership is required as an
input for the chemometric algorithm. Principal components analysis (PCA)
and hierarchical clustering analysis (HCA) are two common unsupervised
techniques.

Supervised techniques are powerful for determining the complex sam-
ple components that distinguish given sample classes, which must be input
by the user. Partial least squares analysis (PLS), linear discriminant analysis
(LDA), or other methods based on the Fisher criterion are some of the com-
mon supervised techniques. Each chemometric technique will be briefly
described when it is first referenced in the remainder of this text. Data
preprocessing methods like baseline correction, normalization, alignment,
and mathematical resolution are important steps in chemometric analysis
because the preprocessing methods reduce variations that are unrelated to
chemical variations.

Correlation optimized warping (COW) and wavelet transforms are two
common techniques that are useful for preprocessing data. Mathematical res-
olution like parallel factor analysis (PARAFAC) is also a unique and important
category of chemometrics. Thus, each main section in this review article is
loosely organized by the categories (unsupervised, supervised, preprocess-
ing, or resolution) of data analysis options that were prominently employed
in the referenced project (though many of the projects could fit into more
than one of these categories). Finally, another commonality evident among
the projects discussed herein is a fifth data analysis option: automated 2D
image analysis algorithms that supplant manual approaches. Again, each
chemometric technique will be briefly described when it is first referenced
in the remainder of this text. Detailed descriptions of the chemometric algo-
rithms can be found in excellent textbooks written by Beebe et al., Brereton,
and Sharaf et al. (12-14).

MULTIDIMENSIONAL GAS CHROMATOGRAPHY
Unsupervised Classification of Raw Data

The following projects focused on unsupervised classification tech-
niques applied to 2D GCxGC data. The authors of these projects used
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unsupervised chemometrics to classify their samples and discover chemical
components that distinguish the classes. Groger et al. obtained compre-
hensive 2D gas chromatography with flame ionization detection (GCxGC-
FID) and comprehensive 2D gas chromatography with total ion current
mass spectrometry (GCxGC-TIC) chromatograms of heroin and cannabis
samples (15).

The first step to processing data is to remove irrelevant variations prior
to submitting the chromatograms to unsupervised and supervised analysis.
For the heroin and cannabis study, Groger et al. applied baseline correction,
normalization and alignment algorithms to their data. Baseline correction
is an important preprocessing step for chromatographic data because the
detector signal can have a constant offset or drift due to column bleed or
background ionization and this can obscure important chemical variations
across samples.

Normalization is also an important preprocessing step for chro-
matograms, because sample preparation can introduce bias and injectors are
notorious for providing poor injection volume precision. Proper normaliza-
tion reduces these sources of variation. Alignment is also an important pre-
processing step because retention time variations between chromatograms
occur due to uncontrollable pressure and temperature fluctuations as well
as column evolution. Retention time alignment algorithms are designed to
objectively improve retention time precision by shifting peak positions so
each chemical has a constant reproducible retention time while preserving
the accuracy of peak volumes.

Groger et al. used a dynamic warping algorithm described by Tomasi
et al. known as COW (16). COW is a popular retention time alignment algo-
rithm that works by subdividing the data into local regions that are iteratively
stretched and compressed by interpolation until the correlation between the
sample and target chromatograms is maximized. Following preprocessing of
the data, HCA was used for unsupervised classification of the illicit drugs,
followed by supervised Fisher criterion to locate chemicals that significantly
distinguished the drugs.

HCA is one of many clustering algorithms that generally work by cal-
culating the distance between samples in variable-space, where distance is
often defined as the Euclidean or Mahalanobis distance among all samples
from the centroid or origin. Classification is achieved by considering close
samples to be similar to each other while increasingly more distant samples
increasingly differ from each other. The Fisher criterion is a statistic that cal-
culates the ratio of signal variance between classes to signal variance within
each class as a function of an independent variable, in this case, retention
time. Retention times with large Fisher ratios reveal the chemicals with statis-
tically significant variations that differentiate the sample classes. The groups
discovered in HCA can be used to identify the sample classes for the Fisher
criterion, since the Fisher criterion requires class information.
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Vial et al. obtained GCxGC-TIC chromatograms of tobacco plant extracts
and they used PCA and a related chemometric technique called independent
component analysis (ICA) to discriminate three types of tobacco plants (17).

PCA works by highly loading the chromatographic signals that have
the greatest variation across all samples, and reducing the chromatograms
from n-dimensional variable space into a much lower dimensional prin-
cipal component (PC) space wherein the PCs are orthogonal, nested, and
ordered based on eigenvalue or variance captured. In the lower dimensional
PC space, similarities and differences among samples can be visualized and
quantified because noise which may have obscured important chemical vari-
ations in the higher-dimensional variable space is removed in the truncated
PC space.

ICA is designed to identify and extract independent pure component
signals from a complex sample profile. Prior to PCA and ICA, Vial et al.
also aligned their chromatograms using the COW algorithm (16). Zhang et
al. reported an adaptation of the COW alignment algorithm for GCxGC-TIC
and selected ion monitoring (SIM) chromatograms (18). Zhang et al.’s COW
adaptation uses SIM information to help match peaks during alignment.
Alignment algorithms that utilize mass spectral information for matching
peaks are increasingly important as the data set of chromatograms moves
from a set of similar samples (homogeneous data set) to a set composed of
a wider variety of samples (heterogeneous data set).

Supervised Classification of Raw Data

The following projects focused on supervised classification methods applied
to 2D and 3D GCxGC data wherein the authors were specifically authen-
ticating blend composition. Pierce and Schale obtained GCxGC-TIC and
GCxGC-TOFMS chromatograms of biodiesels blended with conventional
diesels. The chromatograms were exported out of the ChemStation (Agilent,
Santa Clara, CA) and ChromaTOF (LECO Corp., St. Joseph, MD instru-
ment software as .txt or .cdf files. These were imported into MATLAB
(MATLAB, Natick, MA) where PLS and N-PLS were used to model and
predict biodiesel blend percent compositions of training sets and indepen-
dent test sets. The PLS algorithm was from the PLS Toolbox by Eigenvector
Research Inc. (Eigenvector Research Inc., Wenatchee, WA). The N-PLS algo-
rithm was from the N-Way Toolbox by Rasmus Bro (www.models.life.ku.
dk/source/nwaytoolbox/). To remove chemically-irrelevant variations, the
chromatograms underwent baseline correction and normalization prior to
chemometric analysis (19).

PLS works by finding linear combinations of highly loaded chromato-
graphic signals that co-vary with given quantitative information, thus creating
a model that can be used to predict that quantitative property for new incom-
ing chromatograms. N-PLS is an extension of PLS into multiple dimensions.
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Importing chromatograms into MATLAB to increase data analysis options
is another commonality among many of the references discussed herein.
Pedroso et al. obtained GCxGC-FID chromatograms of adulterated gaso-
lines. The chromatograms were exported out of the instrument software as
ASCII files and then imported into MATLAB where N-PLS was used to model
and predict adulteration of the gasolines (20).

De Godoy et al. obtained GCxGC-FID chromatograms of kerosene and
gasoline blends (21). They used N-PLS, PARAFAC and PARAFAC2 to quantify
the kerosene in the blends. PARAFAC works by using the fact that mul-
tidimensional chromatographic signals of pure chemicals are 3D, trilinear
(defined by the outer product of three vectors), and additive in the pres-
ence of co-eluting components of selected chromatographic subregions.
As long there is some physical separation (selectivity) of each of the co-
eluting components on two of the three dimensions, then PARAFAC can
mathematically resolve the component signals. This yields a prediction of
the pure component concentrations and spectral profiles in the absence of
a given pure standard. This mathematical resolution of overlapping peaks
is called peak deconvolution. PARAFAC2 is a derivative of PARAFAC that
is robust against retention time shifting. The authors concluded for their
study that N-PLS resulted in the lowest RMSECV followed by PARAFAC2 and
PARAFAC (21).

Mathematical Peak Resolution of Raw Data

The following projects focused on mathematical resolution (peak deconvo-
lution) for quantification using raw 3D data generated by a GCxGC with a
multivariate detector, as shown in Figure 2A. Hoggard and Synovec et al.
obtained GCxGC-TOFMS chromatograms of forensic chemical warfare pre-
cursor samples. They used PARAFAC to quantify impurities in the samples
and these quantified contaminants allowed successful determination of the
sample sources (22). Snyder et al. also applied this same PARAFAC algo-
rithm to select subregions of GCxGC-TOFMS chromatograms of human and
mouse brain tissue to detect and quantify betamethylamino-alanine (BMAA),
revealing evidence that it crosses the blood-brain barrier when mice are fed
BMAA (23).

Furthermore, this analysis method combined with the instrumental
method resulted in a 0.7 ppb LOD while the commercial method to detect
BMAA has a 25 ppb LOD. Quantifying the peak volumes by PARAFAC
greatly improved the signal to noise ratio (S/N) by removing noise as an
independent component separate from the chemical signal. To produce
these sophisticated results, researchers must be able to export raw data
at the data point level (Figure 2B) from native instrument software and
import it into a powerful data platform like MATLAB while preserving data
integrity.
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FIGURE 2 A comprehensive 2D gas chromatograph has a thermal or valve modulator that
periodically injects effluent from a long nonpolar first column onto a short polar second
column (A). When the 2D gas chromatograph has a multivariate detector, it produces 3D
chromatograms (B) with high data density. Some researchers analyze the raw data at this
data point level, while others analyze the peak lists output by the instrument software. (color
figure available online.)

This can be a substantial and important hurdle to doing chemometric
analysis. In related work, Hoggard and Synovec presented an algorith-
mic method to automatically select an appropriate number of factors for
PARAFAC models applied to select subregions in GCxGC-TOFMS chro-
matograms, thus reducing by one the number of user inputs required
for PARAFAC analysis (24, 25). This is an important advancement in
converting PARAFAC into an objective method that requires fewer user
inputs than prior PARAFAC algorithms. Furthermore, Hoggard converted
this PARAFAC algorithm into an automated comprehensive PARAFAC algo-
rithm that automatically resolves all peaks in an entire GCxGC-TOFMS
chromatogram (26).

PARAFAC was already a powerful chemometric method in that it
improves S/N so well for select subregions, but being converted into an algo-
rithm that can process entire multidimensional chromatograms with fewer
user inputs makes it even more powerful. In the same laboratory, Watson
et al. built a comprehensive three-dimensional gas chromatography system
with flame ionization detector (GCxGCxGC-FID). They applied PARAFAC
to their chromatograms to add mathematical resolution to the three dimen-
sions of chromatographic resolution already achieved (27). For PARAFAC to
be accurate, the data must be trilinear, but PARAFAC2 can be successfully
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applied to data that deviates from trilinearity due to retention time shift-
ing. Skov et al. applied PARAFAC2 to GCxGC-TOFMS data for the first time
(28). Their algorithm corrected within-run retention time shifting using the
mass spectral information to restore trilinearity to the data and to ultimately
provide accurate quantitative information.

When an analyst comprehensively compares multiple chromatograms
from third-order instrumentation, then a 4-way array of data must be pro-
cessed, and the following articles report techniques for analyzing such
large volumes of four dimensional (4D) data. Mohler et al. obtained
GCxGC-TOFMS chromatograms of metabolites from yeast extracts (29). They
imported the chromatograms into MATLAB and determined whether metabo-
lites were cycling as a function of cellular respiration using an S-ratio
algorithm they developed in MATLAB. The S-ratio algorithm was built to
analyze the entire 4-way array of multiple GCxGC-TOFMS chromatograms
(both separation dimensions, all m/z, and all samples) and find complex
sample components that cyclically vary in concentration.

Cycling concentrations were confirmed using PARAFAC quantification.
Humston et al. also used the S-ratio algorithm applied to GCxGC-TOFMS
chromatograms to identify cycling metabolites (30). They also confirmed the
cyclical concentration variations using PARAFAC. Furthermore, they applied
PCA to optimize sampling time. In related work, Humston et al. obtained
GCxGC-TOFMS chromatograms of Cacao beans with various degrees of
moisture damage (31).

They applied PCA, classification and regression trees (CART), random
forests (RF), PARAFAC (24), and the F-ratio algorithm (which has built-in
baseline correction and normalization options) (32), all implemented in
MATLAB, with the goal of building a predictive model for quality of Cacao
beans using the entire 4D data array. The tree algorithms search through
each variable to find the value of a single variable that best splits the data
into two groups, based on minimizing the mean square error of the model.

This splitting of the data continues until the specified criterion is met,
thus resulting in a tree-like structure. RF is similar to CART with the main
difference being that RF is an ensemble of trees. The authors confirmed
that the analytes of interest found using the F-ratio algorithm did indeed
have significant peak volume differences among the classes according to
the peak list output by the native instrument software (31). In related work,
Humston et al. also obtained GCxGC-TOFMS chromatograms of mixtures of
naphthalene and its isotopic derivative as a standard with dozens of other
similar compounds that chromatographically overlap the naphthalenes.

They imported the chromatograms into Matlab and used an isotopic
dilution standardization method to quantify the unlabeled target analyte
using only a single chromatogram based on the '3C/!2C ratio. They used
PARAFAC to mathematically resolve the naphthalenes and then a classi-
cal least squares (CLS) model for quantification (33). The CLS algorithm
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mathematically resolves the '2C contribution to the signal from the 3C
contribution to the signal since the pure component signals are additive
and linearly related to concentration. These PARAFAC and/or CLS methods
could be useful for the third order GCxGC isotope ratio mass spectrometry
instrument developed and reported by Tobias and Sacks et al. (34).

Classification and Regression of Processed Data

Many of the references discussed heretofore used MATLAB as the main anal-
ysis platform, but researchers do import their chromatograms into other
platforms such as image analysis programs, and other software packages
which provide PCA, PLS, and other chemometrics (35, 36). For instance, Li
et al. used the SIMCA platform (Umetrics, Umea, Sweden) to analyze peak
lists by partial least squares discriminant analysis (PLSDA) with orthogonal
signal correction (OSC), resulting in the discovery of five plasma biomarkers
for diabetes (37).

The definition of PLSDA is essentially equal to the PLS definition pro-
vided above, but some authors make the distinction that PLS is specifically
the main algorithm by which the data model is generated, while the term
PLSDA indicates the PLS model was used for determining the sample com-
ponents that co-vary with the given quantitative information. OSC is a data
filter applied prior to PLS analysis which removes variance from the inde-
pendent variables (e.g., chromatographic signals) that is orthogonal to the
given information (e.g., quantitative information or classifications).

Thus, the important variations in independent variables that correlate
with given information have a better chance of being captured and mod-
eled by primary and secondary latent variables. Cordero et al. used GC
Image software (GC Image, Lincoln, NE), to directly compare GCxGC-gMS
chromatographic images based on a peak matching algorithm that utilized
retention times and mass spectral information for accurate matching (38).

The result was identification of components that differentiated volatile
fractions of coffee and plant leaves from a variety of geographic sources
and roasting processes. In related work, Cordero et al. applied a similar
method to headspace solid phase micro extraction (HS-SPME) GCx GC-gMS
chromatograms and they developed a set of criteria for assessing the source
and quality of volatile fractions of hazelnut products (39).

Schmarr and Bernhardt exported their GCxGC-gMS chromatograms
of fruit volatiles out of the instrument software as .csv files, converted
them into gray scale TIFF images, and warped them using Delta2d v. 4.02
(DECODON, Greifswald, Germany) software for alignment, PCA, and HCA
(40). Vaz-Freire et al. obtained GCxGC-TOFMS chromatograms of three
olive oils and then converted the ChromaTOF software contour plots into
jpg images using Image] 1.37v (Wayne Rasband, NIH, USA) software that
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converts .jpg images into gray scale 8 bit images. The gray scale images
were submitted to PCA using Statistica 6.0 software (Statsoft Inc) to clas-
sify the oils (41). Reichenbach et al. used their GC Image © GCxGC
Software R2.1 and R2.2 to analyze 1.7 terabytes of 3D chromatographic data
(http://www.gcimage.com) (42).

Their data set consisted of comprehensive two-dimensional gas chro-
matography with high-resolution mass spectrometry (GCxGC-HRMS) separa-
tions of breast cancer tumor samples representing three grades of the cancer.
The GC Image software provided baseline correction, alignment, blob detec-
tion, and differential analysis for classification and biomarker detection. The
GC Image software was capable of comprehensively processing the huge
chromatograms because it stores the integer-mass chromatograms in random
access memory (RAM) and then it accesses the high resolution information
stored on the hard disk only when necessary.

The GC Image software can also export the chromatograms into
universally available file formats, which is extremely important for users
interested in applying chemometrics offered by other data analysis plat-
forms. Reichenbach’s report of successfully dealing with terabytes of data is
significant considering that most of the projects described so far dealt with
entire chromatograms and huge volumes of data, rather than dealing with
the significantly smaller peak lists. Analyzing entire chromatograms should
return results that are equal in accuracy to analyzing peak lists as long as
appropriate preprocessing methods are used in both cases and as long as
the peak list is exhaustive.

Qiu et al.’s project is one example of a method that generates and uses
peak lists for chemometric analysis (35). The peak lists were generated by
importing the .csv format GCxGC-FID chromatograms into Excel (Microsoft
Corp., Redmond, WA) where the peaks were algorithmically matched and
quantified. Then the peak lists were submitted to PCA and PLSDA in SIMCA.

Again, most of the projects described so far dealt with comprehensively
analyzing entire chromatograms instead of peak lists. As long as appropriate
preprocessing methods are used and as long as data integrity is maintained
when a raw data file in its native format is reformatted into a compatible and
exportable format, then analyzing entire chromatograms will return results
that are equal in accuracy to analyzing peak lists. The following projects
focused on methods for processing peak lists that are generated by the native
instrument software, many of which were quantified peak lists provided
by the LECO Pegasus GCxGC-TOFMS (LECO Corp., St. Joseph, MD) with
ChromaTOF software.

The ChromaTOF quantification method uses mathematical peak resolu-
tion causing improved S/N that is ideal for trace-analysis applications like
analyzing breath samples from cardiac surgery patients, detecting contami-
nants in wine and grape extracts, mathematically resolving and quantifying
target steroids in nutritional supplements, and differentiating metabolite
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profiles from central carbon metabolic cycles of Methylobacterium
extorquens grown on two different carbon sources (43-46). The ChromaTOF
peak lists contain retention time information on both columns, peak vol-
ume information, and mass spectral information. Thus, a peak list is always
smaller than its corresponding raw chromatogram (in terms of data file size),
and peak lists are more easily exported out of instrument software.

Indrasti et al. obtained ChromaTOF peak lists for glycerolysis products
from animal and plant oils. They imported the peak lists into SAS version
6.12 (SAS Cary, NO) to normalize the data and submit it to analysis of vari-
ance (ANOVA) applications in order to determine the sources of variation
in the data (47). The peak lists were also submitted to PCA in Unscrambler
version 9.6 (CAMO Software AS, Oslo, Norway). The highly loaded vari-
ables in PCA were confirmed to be monoglycerides and diglycerides that
differentiated the sample classes. Gaquerel et al. obtained ChromaTOF peak
lists for the volatile emissions of plants that were provoked by herbivore
interaction.

The peak lists were submitted to ANOVA for feature selection, and
the features were submitted to HCA and PCA to classify plant emissions
(48). Kempa et al. obtained ChromaTOF’s text format peak lists for green
algae that were differentially labeled with '3C. The ChromaTOF peak
lists with mass spectra were processed by novel software called MetMax
which aligned the peak lists and assembled each into a matrix with other
peak information. These matrices were then submitted to PCA and ICA in
MATLAB (49).

Stanimirova et al. obtained ChromaTOF peak lists for honeys from two
different sources. The peak lists were classified and compared by linear
discriminant analysis (LDA) and PLSDA with support vector machines and
Pearson VII universal kernel (50). LDA is a multivariate method that is related
to the univariate Fisher criterion described earlier, so LDA seeks variables
that separate classes. LDA works by finding linear combinations of chro-
matographic retention times that have signals with maximum Fisher ratios
as long as the classes are normally distributed. Chin et al. obtained GCxGC-
TOFMS chromatograms of fatty acid methyl esters from six different animals.
They submitted the ChromaTOF peak list volumes to PCA in an effort to
model biological variability of FAMES among individual animals (51).

The following projects focused on methods for processing ChromaTOF
peak lists (LECO Corp., St. Joseph, MD specifically applied to metabolomics
studies. Metabolomics is a research field that focuses on comprehensively
studying the small molecule metabolites produced in cellular processes. Ma
et al. obtained ChromaTOF peak lists for metabolic extracts from two lines
of transgenic Artemisia annua L. The peak lists were imported into SIMCA
and submitted to PLSDA with analysis of variable importance in projection
scores for feature selection and to determine metabolites that differentiated
the classes (52).
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Wang et al. also obtained ChromaTOF peak lists for metabolite sam-
ples. They developed an algorithm called distance and spectrum correlation
optimization alignment (DISCO) which merges multiple entries of the same
peak appearing in a ChromaTOF list for a single chromatogram, makes an
alignment template, and aligns peak lists using mass spectral information
(53). Ralston-Hooper et al. developed software called Mssort, which also
merges multiple entries of the same peak appearing in a ChromaTOF peak
list and aligns peak lists. The aligned peak lists were applied to PCA to
reveal metabolic differences among the Diporeia samples grown in different
environments (54).

Oh et al. also developed a peak sorting and alignment algorithm for
the ChromaTOF peak lists and demonstrated that the algorithm aligns both
chromatographic dimensions and matches mass spectra among peak lists
(55). Almstetter et al. also algorithmically aligned ChromaTOF peak lists of
metabolites, then they manually reduced the lists to a subset of features
and submitted these to PCA to compare two classes (56). Li et al. obtained
GCxGC-TOFMS chromatograms of metabolite samples from three genetic
types of E. coli and they exported both the ChromaTOF peak lists and the
m/z 73 chromatograms as .csv files. The peak lists were processed to merge
split peaks and these were submitted to PCA and PLSDA. PLS results were
used to optimize the parameters for fuzzy c-means clustering (57).

Fuzzy c-means clustering is similar to HCA in terms of using Euclidean
or Mahalanobis distances in variable space to determine similarity of sam-
ples, but fuzzy c-means is more flexible because a single sample is assigned
to multiple classes to differing degrees and final classification is determined
using some convergence criterion, like minimizing an objective function
or reaching a given sensitivity threshold for minimal difference between
one model and the next iteration. Other clustering techniques can be used
prior to fuzzy c-means clustering in order to estimate the number of clusters
expected in the data set

These algorithms that match mass spectra for alignment purposes are
related to target analyte analysis algorithms that are designed to match
observed mass spectra with library mass spectra for identification. The auto-
mated mass spectral deconvolution and identification system (AMDIS) and
the open mass spectrometry search algorithm (OMSSA) are target analyte
analysis algorithms that were applied to 2D separations data during the
2008-2010 time period (58-61). The target analyte alogorithms are widely
used in the tandem mass spectrometry (MS/MS) community.

MULTIDIMENSIONAL LIQUID CHROMATOGRAPHY

There were plenty of publications in the field of GCxGC combined with
chemometrics during the 2008 through 2010 period, but there were also
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a number of developments in LCXLC combined with chemometrics during
the same time period. Developing an LCXLC instrument includes challenges
that are different than the obstacles to developing a GCxGC instrument,
but the data analysis challenges are often similar, including preprocessing,
data exportation, and reduction of chemically irrelevant variations, all for
the purpose of improving the interpretation of samples. An example is van
der Klift et al. who adapted GCxGC software for visualizing and quantifying
their LCXLC data in MATLAB (62).

Another example of the crossover between GCxGC and LCxLC is
Reichenbach et al’'s. GC Image®© software for both GCxGC and/or LCxLC,
which is designed to identify and precisely quantify 2D peaks (http://www.
gcimage.com) (63). Furthermore, Reichenbach et al. obtained LCXLC-UV
chromatograms and applied the GC Image software to achieve sample clas-
sification via a sophisticated baseline correction algorithm, peak detection
algorithm, and K-nearest neighbors (KNN) classification (64). In related
work, Reichenbach et al. demonstrated their template pattern matching
software called Smart Templates for LCXLC chromatograms.

The software takes chromatograms and creates a typical pattern of
peaks with retention time data and chemical identities or sample classes.
This typical pattern is used with rules, constraints, and mass spectral infor-
mation to match peaks among chromatograms (65). Sherma used office
scanner technology, Proquant image software, and ImageQuant for ana-
lyzing LCxXLC data (66). Sherma’s coupling of office imaging technology
and LCxLC instrumentation might not fit in the chemometrics category as
precisely as Reichenbach’s GCImage software, but Sherma’s work is an
example of a creative crossover between separation science and image anal-
ysis techniques. Another LCXLC software system that was reported is called
Chrom®d"¢ ver. 1.0 software (Chromaleont, Messina, Italy) which was used
by both Dugo et al. and Mondello et al. for baseline correction, internal
standard normalization, peak-finding and peak integration (8, 67).

Thekkudan et al. reported applying a Gaussian fitting algorithm to
LCXLC chromatograms to quantify peak volumes (68). Stevenson et al.
demonstrated their algorithm written in Wolfram Mathematica 7 (Hearn
Scientific Software, Melbourne, VIC, Australia) which automates peak find-
ing and 2D plotting for 2D HPLC chromatograms. The algorithm is based on
using the derivative of raw chromatograms to find peak maxima, interpolate
the chromatographic signals, and merge first dimension peak slices (69).
The term “slice” is defined in Figure 1. Cantwell et al. simulated LCxLC data
in order to demonstrate the Messick, Kalivas, and Lang (MKL) multivariate
selectivity metric, which quantifies the selectivity of each peak with respect
to all other peaks in the chromatogram using the individual component pro-
files resolved by PARAFAC (70-73). This was an interesting development
because the best precision with which the popular PARAFAC algorithm can
resolve a component is related to this multivariate selectivity value (70).
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The selectivity and resolution of each peak is related to the orthogonal-
ity of the stationary phases and Dazykowski et al. developed a PCA and HCA
method for determining the best pairs of coupled thin layer chromatography
(TLC) phases for optimal 2D TLC (74). Kallio et al. developed software in
MATLAB (The MathWorks, Natick, MA, USA) for visualizing and interpreting
comprehensive LCXLC (or GCxGC) data once .csv format chromatograms
are imported into MATLAB. The programs allows the user to visualize 2D
and 3D plots, compare two 2D plots, and determine retention times, peak
heights, and volumes (75).

MULTIDIMENSIONAL ELECTROPHORESIS

The 2D gel electrophoresis community has data processing methods and
issues in common with the GCxGC and LCxLC communities since a 2D
electropherogram has the same dimensionality as a GCxGC or LCXLC chro-
matogram generated by a univariate detector, as depicted in Figure 3.
Quintana et al. obtained 2D gel electrophoresis separations of salivary pro-
teins from healthy individuals as a function of sampling time. They imported
the images into Statistica software (StatSoft, Tulsa, OK) and applied ANOVA
(ratioing between-class variance to within-class variance), PCA, and HCA.
The authors concluded there was no statistical significance in time of sam-
pling due to variability of protein patterns, but individuals could be identified
by PCA (70).

Plymoth et al. also obtained 2D gel electrophoresis separations of sali-
vary protein samples from subjects that were smokers and nonsmokers. They
imported the images into SIMCA-P software (Umetrics AB, Umea, Sweden)
and applied PCA, HCA, and PLSDA. A correlation was found between
smoker profiles and diagnosis of chronic obstructive pulmonary disease
(77). Dowsey et al. used images of 2D gel electrophoresis separations to
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FIGURE 3 In 2D electrophoresis, a mixture of macro-molecules is often separated by iso-
electric focusing in one dimension and mobility through a cross-linked gel matrix in a second
physically perpendicular dimension. The 2D electropherograms generated by a univariate
detector have the same dimensionality as a GCxGC or LCxLC chromatogram generated by
a univariate detector, so many data analysis methods are common to all three types of
instruments. (color figure available online.)
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demonstrate their automated image processing algorithm that interpolates,
normalizes, and aligns the images to do differential analysis of proteomics
samples. The processing algorithm was developed using GPU technology
on Nvidia (http://www.nvidia.com) consumer graphics card hardware with
the Cg programming language (78).

Daszykowski et al. used images of 2D gel electrophoresis separations
to demonstrate application of a fuzzy warping algorithm from the MATLAB
toolbox (79). In related work, Daszykowski et al. developed a method for
automatically preprocessing electrophoretic images at the pixel level, rather
than the “spot” level, to avoid problems with missing elements in lists of
spot data. Working with the pixels requires the user to input fewer optimal
parameters so the user is less likely to inadvertently introduce variability
into the data. The authors used robust orthogonal regression for baseline
correction that works well even for undetected overlapping spots (80).

Marengo et al. used 2D gel electrophoresis separations of proteomics
samples to demonstrate ranking PCA via forward search variable selection
for discovering biomarkers (81). Ranking PCA is supervised PCA coupled
to a forward search variable selection algorithm. Given class information,
PCA is calculated iteratively where at each iteration, a new variable is added
to the data set submitted to PCA. Variables that improve the clustering and
separation between two classes are kept and variables that diminish the
clustering are discarded. This observation results in discovering all variables
that are possibly relevant to classification.

Soggiu et al. used 2D gel electrophoresis separations of serum and
plasma samples to demonstrate a computational approach for detecting low
abundance proteins. The traditional approach of unobscuring low abun-
dance proteins is to chemically reduce the concentration of highly abundant
proteins. Soggiu et al’s. computational approach is to use wavelet denois-
ing applied with the commercial imaging software ImageMaster 2D Platinum
6.0.1 (GE Healthcare) to transform images from a noisy function domain to
a less noisy wavelet coefficients domain, and then reconstruct the less noisy
image (82).

Rye et al. used images of entire 2D gel electrophoresis separations of
animal tissue extracts to apply image morphology preprocessing that reduces
streaks, corrects nonuniform backgrounds, and aligns entire images at the
pixel level in MATLAB. The preprocessed images were then submitted to
PCA and PLS for classification and modeling time after slaughter (83). Apraiz
et al. used 2D isoelectric focusing and SDS-PAGE to obtain separations of
proteins in mussels after an oil spill. The images were submitted to PCA
using UMAX Image Scanner (GE Healthcare) (84).

Barbas et al. obtained 2D capillary electrophoresis-UV separations of
samples from controls and diabetics that had been treated with antioxi-
dants. The electropherograms were exported as ASCII files and preprocessed
with Needelman-Wunsch dynamic programming for alignment in SEQSEE
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(computational chemistry program), baseline correction, normalization, and
multidimensional scaling. The preprocessed electropherograms were sub-
mitted to differential analysis, such as subtracting pairs of profiles to find
differences between the two classes (85).

This review covers developments in 2D image analysis during the 2008
through 2010 period because our previous review article covered the 2002
through 2007 time period, but our previous review neglected to report a 2003
article by Luhn et al., which describes automated analysis of images of 2D gel
electropherograms (86). Luhn et al. developed a method of using standard
positions and image fusion to create proteome maps from 2D gel elec-
trophoresis images in Delta2d (DECODON, Greifswald, Germany) software.

Finally, Skinner described a new instrument that coupled liquid chro-
matography and capillary array electrophoresis that produced 2D separation
profiles. The chromatograms were imported into MATLAB where 2D
Gaussian fitting was used to obtain peak widths for peak capacity evalu-
ations (87). Skinner’s coupling of LC and electrophoresis instrumentation
is an example of the creative crossovers among GCxGC, LCxLC, and 2D
electrophoresis projects in the separation science communities.

CONCLUSION

We reviewed the developments of chemometrics applied to multidimen-
sional separations combined with chemometrics during the 2008-2010 time
period, and we hope we did not inadvertently omit publications that were
within the scope of this review article. Table 1 contains a categorized list of
the chemometrics and software that were referenced in this review. It has
repeatedly been shown that the advanced processing techniques can offer
improved insight into the samples, both qualitatively and quantitatively.

The chemometric data processing tools are becoming increasingly
mature and easy to use, and in some cases, as with PARAFAC and alignment
algorithms, are evolving to require fewer user inputs and/or be applica-
ble to higher-order data. The instrumentation and stand alone software are
becoming more sophisticated allowing improved data processing options.
Although, there has been significant advancement in the chemometric meth-
ods applied to multidimensional data, one area for improvement is in
algorithms that utilize the entire data structure and find information that
is only contained in higher-order data.

Processing peak lists utilizes the entire data structure when locating
and quantifying peaks, but the instances where raw data (pixel-based data)
is used, it is possible that higher-order algorithms could yield better results
than lower-order algorithms, in some cases.
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